Matrix Inequalities by Means of Block Matrices 1
نویسنده
چکیده
One of the most useful tools for deriving matrix inequalities is to utilize block matrices; usually they are 2× 2 in most applications. In this paper, we shall show a weak log-majorization inequality of singular values for partitioned positive semidefinite matrices, from which some classical and recent results of Bhatia and Kittaneh [4], Wang, Xi and Zhang [12], and Zhan [13] will follow. We shall also develop a new technique that is complementary to the Schur complement; while by making use of Schur complements, a number of determinantal, trace, and other inequalities are exhibited in [16]. With the new technique we add more inequalities to these in [16]. We denote the eigenvalues of an n×n complex matrix X by λi(X), i = 1, 2, . . . , n, and arrange them in modulus decreasing order |λ1(X)| ≥ |λ2(X)| ≥ · · · ≥ |λn(X)|. The singular values of an m × n matrix X are denoted by σ1(X), . . . , σn(X) and are also arranged in decreasing order. Note that σi(X) = λi(|X |) for each i, where |X | = (X∗X) 2 . We further write
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملUpper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملSOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION
Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...
متن کامل